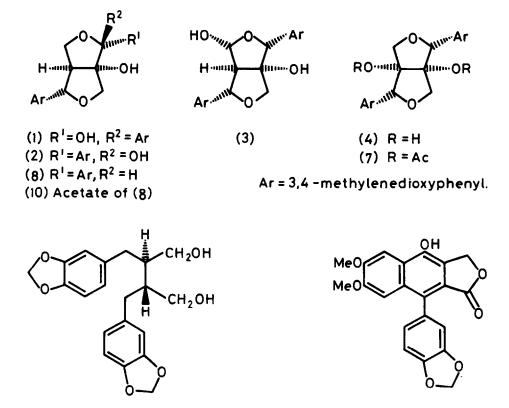
Tetrahedron Letters No. 34, pp 2961 - 2964, 1975. Pergamon Press. Printed in Great Britain.

THE STRUCTURE OF WODESHIOL - THE FIRST OF A NEW SERIES OF LIGNANS

A, S. R. Anjaneyulu, P. Atchuta Ramaiah, and L. Ramachandra Row,

Department of Chemistry, Andhra University, Waltair, India, and Andrew Pelter^M and Robert S. Ward,

Department of Chemistry, University College of Swansea, Singleton Park, Swansea SA2 8PP, U.K.


(Received in UK 25 June 1975; accepted for publication 10 July 1975)

Wodeshiol, a new lignan from <u>Cleistanthus collinus</u>, is shown to be 1, 5-dihydroxy-2e, 6e-dipiperonyl-3, 7-dioxabicyclo[3, 3, 0]octane, the first member of a new series of dihydroxy lignans.

We have recently reported the isolation of a number of new lignans including arboreol (1), isoarboreol (2), and gummadiol (3) from <u>Gmelina arborea</u> Linn, ^{1, 2} We now report the isolation of an isomeric compound, wodeshiol (4) from <u>Cleistanthus collinus</u> Roxb.

Wodeshiol occurs along with (-)-dihydrocubebin (5), and the 4-O-(β -2, 3-di-Omethyl-D-xylopyranosyl-($1\rightarrow$ 4)- β -D-glucopyranoside) of diphyllin (6).³ (-)-Dihydrocubebin, $C_{20}H_{22}O_6$, m.p. 112°, $[a]_D$ -42°, has not been previously isolated from natural sources, but was identical (m.m.p. and n.m.r.) with the product obtained by reduction of (-)-cubebin.⁴

Wodeshiol, $C_{20}H_{18}O_8$, m.p. $153-4^\circ$, $[\alpha]_D - 12^\circ$, contains two hydroxyl groups $(\nu_{O-H} {}^{3480}_{13}$ and $3360 \text{ cm}^{-1})$ and gave a diacetate (7), $C_{24}H_{22}O_{10}$, m.p. $169-70^\circ$. The 1 H and 13 C n.m.r. spectra (Tables 1 and 2) contained signals at similar positions to those of other 2, 6-diaryl-3, 7-dioxabicyclo[3, 3, 0] octanes, 1,2 but showed clearly that wodeshiol has a very symmetrical structure. In addition to signals due to aromatic protons there were just four singlets in the 1 H n.m.r. spectrum due to the OCH₂O groups (4.07 τ), the H-2/H-6 protons (5.04 τ), the H-4/H-8 protons (5.94 τ), and the OH groups (6.51 τ). There were no high field signals corresponding to H-5 of paulownin (8) or arboreol, or H-1 of sesamin, asarinin, etc. In the spectrum of the diacetate (7) the H-4/H-8 protons appeared as a pair of doublets at 5,60 and 5.72 τ (J = 10 Hz). The spectrum of the diacetate also confirmed that there were no CHOH or CH₂OH groups in wodeshiol since none of the signals were moved downfield by more than 0.3 p.p.m. relative to wodeshiol itself.

(5)

The 13 C n.m.r. spectrum contained only nine peaks. In addition to those due to aromatic carbon atoms and OCH₂O groups there were just three signals which correspond in terms of chemical shift to C-1, C-2 and C-8 of paulownin (see Table 2). There was no high field signal corresponding to C-5 in paulownin, and furthermore off-resonance experiments confirmed that the signal at 587.51, assigned to C-1/C-5, was that of a tertiary carbon atom. The off-resonance spectrum also completely confirmed the number of hydrogens assigned to C-2 (6) and C-4 (8).

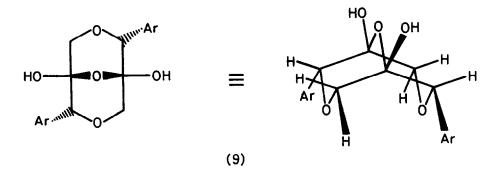
The mass spectrum of wodeshiol contained, in addition to the molecular ion, a number of important fragment ions, notably $\underline{m/e}$ 236 (M-ArCHO), $\underline{m/e}$ 177 (ArCH=C(OH)-CH₂), and $\underline{m/e}$ 162 (ArCH=C=O⁺.) which confirmed the proposed structure.

Table 1.	H n, m, r, spectra				
Proton	Paulownin (8) (CDCl ₃)	Paulownin acetate (10) (CDCl ₃)	Wo des hiol (4) (CDCl ₃)	Wodeshiol acetate (7) (CDCl ₃)	Periodate product (9) (CDCl ₃ -DMSO)
5	7 .02 m	6.76 m	-	<u> </u>	-
2	5 .2 6 s	5,01 .	5.04 s	4.89 s	5.60 br. s
6	5.23 d (6)	5,32 d (5)			
4a	6.24 dd (6, 9)	6.28 dd (5, 9)		5.72 d (10)	6.69 dd (11,1.5
8 a	6.17 d (10)	5.83 d (10)	5,94 s		3.07 uu (11,1.3
4e	5,56 dd (8, 9)	5,63 dd (7, 9)	5,72 0	5.60 a (10)	6.25 d (11)
8e	6.01 d (10)	5.61 a (10)	, i i i i i i i i i i i i i i i i i i i		0.25 d (11)
осн ₂ о	4.10 s, 4.12 s	4.10 s, 4.12 s	4.07 s	4.11 s	4,14 s
arom,	3.1 - 3.4 m	3,1 - 3,4 m	3.1 - 3.3 m	3.1 - 3.4 m	2.9 - 3.4 m
ОН	8.15 s	-	7.55 s	-	3,58 br.s
ососн ₃	-	8.29 s	-	8.17 s	-

Table 1. H n.m.r. spectra

^M Values given in τ , coupling constants (Hz) in brackets.

All assignments supported by appropriate spin decoupling experiments and correct integration.


Table 2. ¹³C n.m.r. spectra

Paulownin (8) (CDCl ₃)	Paulownin acetate (10) (CDCl ₃)	Wodeshiol (4) (CDCl ₃)	Wodeshiol acetate (7) (CDCl ₃)
91.7 4	97.08	5 87 51	92.31
60,58	58 .9 5		
71.58	69.85	5 76 43	7 4 . 2 6
74.98	75.08) 10,45	
87,48	86.75	J 86 86	86,83
85,88	85.67)	
	(8) (CDC1 ₃) 91.74 60.58 71.58 74.98 87.48	(8) acetate (10) (CDCl ₃) (CDCl ₃) 91.74 97.08 60.58 58.95 71.58 69.85 74.98 75.08 87.48 86.75	$\begin{array}{c ccccc} (8) & acetate (10) & (4) \\ (CDCl_3) & (CDCl_3) & (CDCl_3) \\ 91.74 & 97.08 & \begin{cases} 87.51 \\ 87.51 \\ 71.58 & 69.85 \\ 74.98 & 75.08 \\ 87.48 & 86.75 & \begin{cases} 86.86 \\ 86.86 \\ \end{cases}$

ø

Signals due to aromatic, OCH2O, and COCH3 not included.

Measurements are given as p.p.m. downfield from TMS as internal standard at zero. All assignments are supported by off-resonance decoupling experiments. Periodate oxidation of wodeshiol was complete in 4 hr. and gave a compound, $C_{20}H_{18}O_9$, m.p. 210°, which had no carbonyl band in its infrared spectrum but gave a broad hydroxyl peak centred at 3300 cm⁻¹. The ¹H n.m.r. spectrum confirmed that this compound was the cyclic hemiketal (9) formed from the expected diketone, and the long range coupling between the axial proton at C-2 (6) and the axial proton at C-4 (8) is consistent with the conformation shown. The molecular ion in the mass spectrum corresponded to the diketone rather than the cyclic hemiketal.

The coincidence of the signals due to H-2 and H-6 and those due to H-4 and H-8 suggests very strongly that the stereochemistry at C-2 and C-6 in wodeshiol is identical. Furthermore since the H-4/H-8 protons all come below 6τ then the configuration of both aryl groups must clearly be equatorial. ^{5, 6} Thus wodeshiol is 1, 5-dihydroxy-2e, 6e-dipiperonyl-3, 7-dioxa-bicyclo[3, 3, 0]octane, the first example of a lignan with hydroxyl groups at both of the tertiary (1, 5) positions.

References

- A.S.R.Anjaneyulu, K.Jaganmohan Rao, V.Kameswara Rao, L.Ramachandra Row,
 C.Subrahmanyam, A.Pelter, and R.S.Ward, <u>Tetrahedron</u>, 1975, <u>31</u>, 1277.
- A.S.R. Anjaneyulu, A. Madhusudhana Rao, V. Kameswara Rao, L. Ramachandra Row A. Pelter, and R.S. Ward, Tetrahedron Letters, 1975, 1803.
- 3. A.S.R.Anjaneyulu, P.Atchuta Ramaiah, L.Ramachandra Row, Phytochemistry, 1975, in press.
- J.E.Batterbee, R.S.Burden, L.Crombie, and D.A.Whiting, <u>J.Chem.Soc.</u> (C), 1969, 2470; We express our thanks to Professor Crombie for an authentic sample of (-)-dihydrocubebin.
- 5. A.J.Birch, P.L.Macdonald, and A.Pelter, J.Chem.Soc. (C), 1967, 1968.
- 6. C.K.Atal, K.L. Dhar, and A. Pelter, J. Chem. Soc. (C), 1967, 2228.